If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2-12m-3=0
a = 1; b = -12; c = -3;
Δ = b2-4ac
Δ = -122-4·1·(-3)
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2\sqrt{39}}{2*1}=\frac{12-2\sqrt{39}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2\sqrt{39}}{2*1}=\frac{12+2\sqrt{39}}{2} $
| m2-12m-3=0 | | 216=18k | | x2+2.8x+1.96=0 | | x+32=−15 | | 15=2x/5x | | 75-25x=-250 | | t÷3-8=15 | | 2(16+3x)-8=3(2x+8) | | 2(4-5x)-8=10 | | -0.6+1.4x=-0.2x-1.2 | | −3(2x–3)+10x=39 | | .7+41=y | | x3−6=−7 | | 5j=–10+3j | | w+35=76 | | 3402+3408=8x | | 3/7=6/n | | 6+8(y^2)=94 | | 12/4=24/n | | 4/8=n/24 | | 5.9/6.3=x/2.3x= | | 60/10=n/3 | | 10(5)^x=250 | | -0.125x^2+0.35x+0.75=0 | | 22/40=n/20 | | 22/40=n20 | | 3+2+2x10=70 | | 0.2n+0.2=n | | 5(x+13=160 | | –7x+-16=19 | | 15/25=n/75 | | 10j+6=–8+8j |